Voltage monitoring relay CM-EFS.2 For single-phase AC/DC voltages

The CM-EFS.2 is an electronic voltage monitoring relay that provides reliable monitoring of voltages as well as detection of phase loss.

All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (Push-in terminals).

Characteristics

- Monitoring of DC and AC voltages (3-600 V)
- TRMS measuring principle
- One device includes 4 measuring ranges
- Over- and undervoltage monitoring
- ON- or OFF-delay configurable
- Latching function configurable
- Threshold values for >U and <U adjustable
- Fixed hysteresis (5 %)
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- Tripping delay T_V adjustable (0 s; 0.1-30 s)
- 1x2 c/o (SPDT) contacts (common signal) or
 2x1 c/o (SPDT) contact (separate signals for >U and <U) configurable
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals

(∰) ul 508, CAN/CSA C22.2 No.14

(pending)

© GOST

CB CB Scheme

© CCC

Marks

CE CE

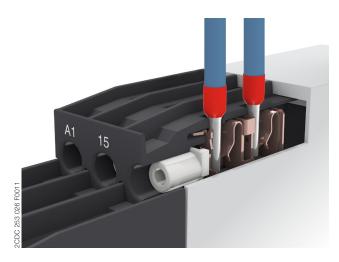
C-Tick

Order data

Voltage monitoring relay

Туре	Rated control supply voltage	Connection technology	Measuring ranges	Order code
CM-EFS.2P	24-240 V AC/DC	Push-in terminals	3-30 V, 6-60 V, 30-300 V, 60-600 V	1SVR 740 750 R0400
CM-EFS.2S	24-240 V AC/DC	Screw type terminals	3-30 V, 6-60 V, 30-300 V, 60-600 V	1SVR 730 750 R0400

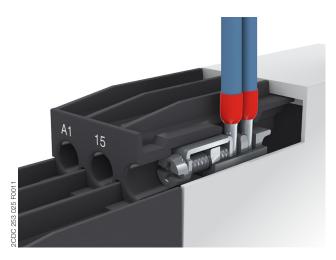
Accessories


Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR 430 029 R0100
MAR.12	Marker label for devices with DIP switches	1SVR 730 006 R0000
COV.11	Sealable transparent cover	1SVR 730 005 R0100

Connection technology

Maintenance free Easy Connect Technology with Push-in terminals

Type designation CM-xxS.yyP



Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
 - Wire size: 2 x 0.5-1.5 mm², (2 x 20 16 AWG)
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals

Type designation CM-xxS.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: 1 x 0.5-2.5 mm² (2 x 20 14 AWG), 2 x 0.5-1.5 mm² (2 x 20 16 AWG) rigid:
 1 x 0.5-4 mm² (1 x 20 12 AWG)
 - $1 \times 0.5-4 \text{ mm}^2$ (1 x 20 12 AWG), $2 \times 0.5-2.5 \text{ mm}^2$ (2 x 20 14 AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with Push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Adjustment of the threshold value >U for overvoltage
- 2 Adjustment of the threshold value <U for undervoltage
- 3 Indication of operational states

U/T: green LED - control supply voltage/timing

R: yellow LED - relay status

U: red LED - over- / undervoltage

- 4 Adjustment of the measuring range
- 5 Adjustment of the tripping delay T_V
- 6 DIP switches (see DIP switch functions)

When compared with our previous version, the position of the adjustment potentiometers 4 and 5 have changed places.

Application

The voltage monitoring relays CM-EFS.2 are designed for use in single-phase AC and/or DC systems for the simultaneous monitoring of over- or undervoltages as well as detection of phase loss. Depending on the configuration, one c/o (SPDT) contact each or both c/o (SPDT) contacts in parallel can be used for the over- and undervoltage monitoring. The devices operate over an universal range of supply voltages and provide an adjustable tripping delay. Open or closed-circuit principle as well as ON of OFF delay tripping are configurable.

Operating mode

The CM-EFS.2 have 2 c/o (SPDT) contacts and include 4 measuring ranges: 3-30 V, 6-60 V, 30-300 V and 60-600 V. The units are adjusted with front-face operating controls. The selection of: ON-delay \square or OFF-delay \square , open- \square or closed-circuit principle \square , latching function ON \square or OFF \square and 2x1 c/o \square or 1x2 c/o (SPDT) contacts \square is made with DIP switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold valuemax (>U) for overvoltage, the threshold valuemin (<U) for undervoltage and the tripping delay T_V . The tripping delay T_V is adjustable over a range of instantaneous to a 30 s delay. The hysteresis is fixed at 5 %. Timing is displayed by a flashing green LED labelled U/T.

Function diagrams

Voltage window monitoring 1x2 c/o (SPDT) contacts № ON-delayed without latching

Open-circuit principle -

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

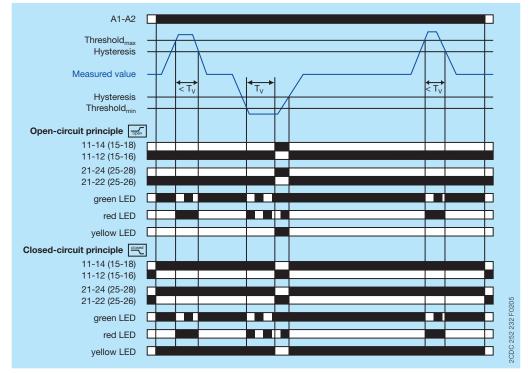
Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the output relays re-energize, the yellow LED glows and the red LED turns off.

Open-circuit principle

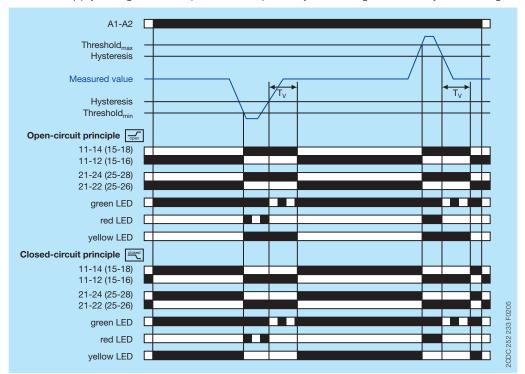
The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays energize, the yellow LED (relays energized) glows and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete, the output relays de-energize and the yellow LED (relay energized) turns off.

If control supply voltage is interrupted, the green LED turns off.


Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays deenergize, the yellow LED turns off and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED. When T_V is complete, the output relays energize and the yellow LED (relay energized) glows.

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes \prod (undervoltage) respectively.

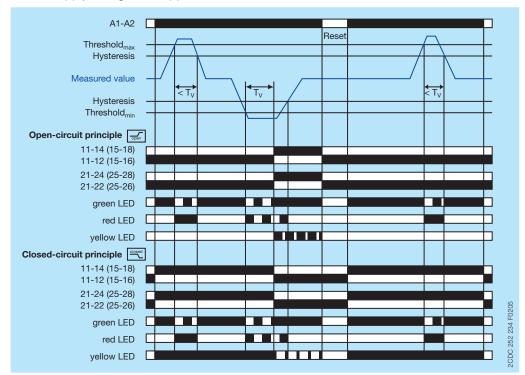
Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value $_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold value $_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing \prod green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) flashes ILILIL.

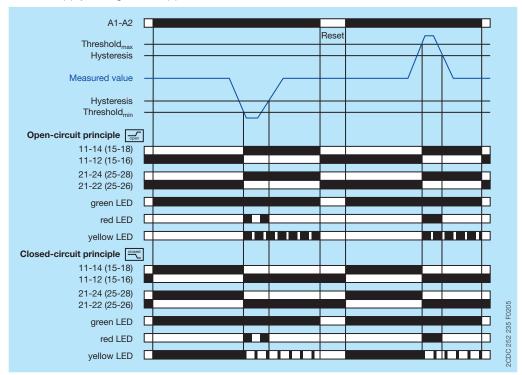
If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function).

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relays energize, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overvoltage), or flashes $\Pi\Pi\Pi\Pi$ (undervoltage) respectively.

If the measured value decreases below the threshold value $_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold value $_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).


If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold $value_{max}$ (>U) or drops below the threshold $value_{min}$ (<U), the output relays de-energize, the yellow LED (relays energized) flashes flashes and the red LED glows (overvoltage), or flashes flashes (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function).

Voltage window monitoring 2x1 c/o (SPDT) contact <a>™ ON-delayed <a>™ without latching <a>™

Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

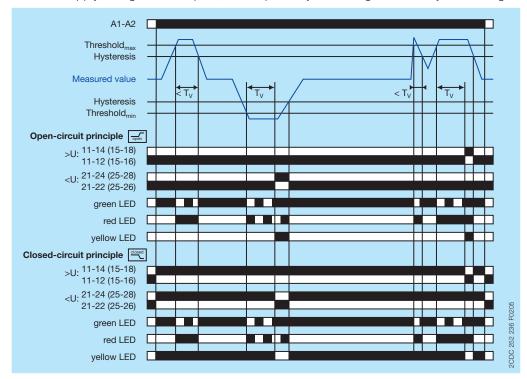
Timing of T_V is displayed by the flashing \prod green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, energizes and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, deenergizes and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, de-energizes and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, reenergizes, the yellow LED glows and the red LED turns off.

Open-circuit principle

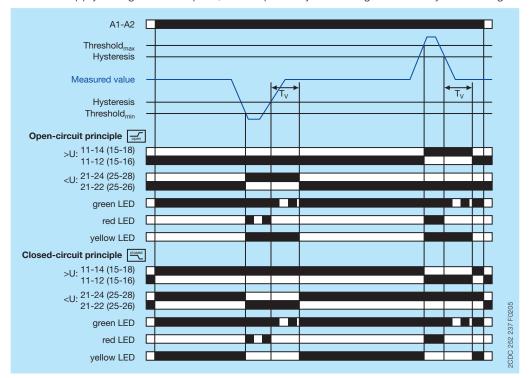
The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, energizes, the yellow LED (relays energized) glows and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing $\prod L \prod$ green LED. When T_V is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, de-energizes and the yellow LED (relay energized) turns off.

If control supply voltage is interrupted, the green LED turns off.


Closed-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, de-energizes, the yellow LED turns off and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing $\prod L \prod$ green LED. When T_V is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, energizes and the yellow LED (relay energized) glows.

Voltage window monitoring 2x1 c/o (SPDT) contact ON-delayed with latching Open-circuit principle The voltage to be monitored (measured value) is applied to terminals B-C. The control supply value of the control supply o

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes \prod (undervoltage) respectively.

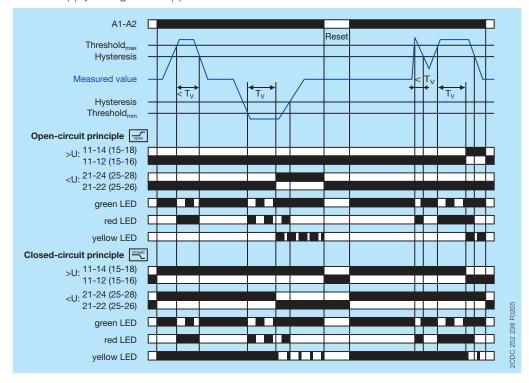
Timing of T_V is displayed by the flashing $\prod L \prod L$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, energizes and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, denergizes and the yellow and green LEDs turn off.

Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the tripping delay T_V starts and the red LED glows (overvoltage), or flashes $\prod L \prod L$ (undervoltage) respectively.

Timing of T_V is displayed by the flashing \prod green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, de-energizes and the yellow LED (relays energized) flashes ILLLL.

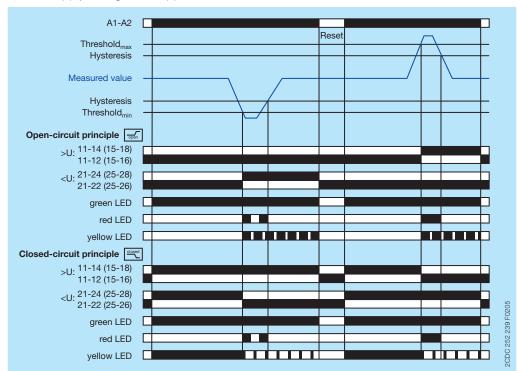
If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains de-energized (latching function).

Voltage window monitoring 2x1 c/o (SPDT) contact of OFF-delayed with latching

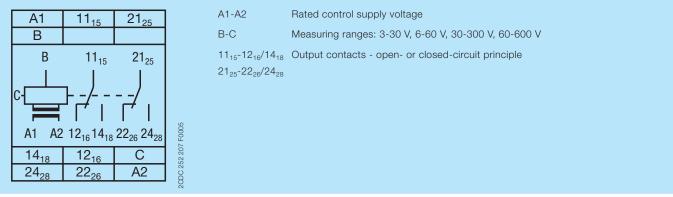
Open-circuit principle

The voltage to be monitored (measured value) is applied to terminals B-C. The control supply voltage applied to terminals A1-A2 is displayed by the glowing green LED.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or $21_{25}-22_{26}/24_{28}$ (<U) respectively, energizes, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overvoltage), or flashes $\Pi\Pi\Pi$ (undervoltage) respectively.


If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off. Closed-circuit principle


The voltage to be monitored (measured value) is applied to terminals B-C. When control supply voltage is applied to terminals A1-A2, the output relays energize and the green and yellow LED (relays energized) glow.

If the measured value exceeds the threshold value_{max} (>U) or drops below the threshold value_{min} (<U), the output relay 11_{15} - $12_{16}/14_{18}$ (>U), or $21_{25}-22_{26}/24_{28}$ (<U) respectively, de-energizes, the yellow LED (relays energized) flashes \square and the red LED glows (overvoltage), or flashes \square (undervoltage) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>U), or 21_{25} - 22_{26} / 24_{28} (<U) respectively, remains de-energized (latching function).

Electrical connection

Connection diagram

DIP switches

D18	1 4			10	1	ON	OFF-delay
Position	4	3	2	 Ö		OIV	Of 1 -delay
ON t	2x1 c/o		closed	274 F0005		OFF	ON-delay
	$\vdash =$			252	2	ON	Closed-circuit principle
OFF	1x2 c/o		open	2CDC 252		OFF	Open-circuit principle
					3	ON	Latching function activated
						OFF	Latching function not activated
					4	ON	2x1 c/o (SPDT) contact
						OFF	1x2 c/o (SPDT) contacts
					OF	F = Defau	ult

Technical data

Data at $\rm T_a = 25\ ^{\circ}C$ and rated values, unless otherwise indicated

Input circuits

Supply circuit	A1-A2
Rated control supply voltage U _s	24-240 V AC
Rated control supply voltage U _s tolerance	-15+10%
Rated frequency	50/60 Hz
Typical current / power consumption 24 V DC	30 mA / 0.75 W
115 V AC	77 mA / 1.9 VA
230 V AC	11 mA / 2.6 VA
Power failure buffering time	20 ms
Transient overvoltage protection	varistors
Measuring circuit	B-C
Monitoring function	Over- and undervoltage monitoring
Measuring method	TRMS measuring principle
Measuring inputs terminal connection	B-C
measuring range	3-30 V, 6-60 V, 30-300 V, 60-600 V
input resistance	Θ 600 kΩ
pulse overload capacity t < 1	s 800 V
continuous capacit	/ 660 V
Threshold value	>U and <u adjustable="" indicated<="" td="" the="" within=""></u>
	measuring range
Tolerance of the adjusted threshold value	10% of the range end value
Hysteresis related to the threshold value	5 % fixed
Measuring signal frequency range	DC / 15 Hz - 2 kHz
Rated measuring signal frequency range	DC / 50-60 Hz
Maximum response time AC	80 ms
DC	120 ms
Accuracy within the rated control supply voltage tolerance	ΔU ≤ 0.5 %
Accuracy within the temperature range	ΔU ≤ 0.06 % / °C
Transient overvoltage protection	varistors
Timing circuit	
Time delay T_{V}	0 s or 0.1-30 s adjustable
Repeat accuracy (constant parameters)	±0.07 % of full scale
Tolerance of the adjusted time delay	-
Accuracy within the rated control supply voltage tolerance	$\Delta t \leq 0.5\%$
Accuracy within temperature range	Δt ≤ 0.06 % / °C

User interface

Indication of operational states		
Control supply voltage	U/T: green LED	: control supply voltage applied
Measured value	U: red LED	: overvoltage
Relay status	R: yellow LED	: output relay energized, no latching function : output relay energized, active latching function : output relay de-energized, active latching function

Output circuits

Kind of output	11-12/14	relay, 1st c/o (SPDT) contact
	21-22/24	relay, 2nd c/o (SPDT) contact
		1 x 2 c/o (SPDT) contacts (common signal) or
		2 x 1 c/o (SPDT) contact (separate signal for >U and
		<u) configurable<="" td=""></u)>
Operating principle		open- or closed-circuit principle configurable (open-
		circuit principle: output relays energize if the measured
		value exceeds 🕏 / falls below 🔁 the adjusted
		threshold value, closed-circuit principle: output relays
		de-energize if measured value exceeds 😾 / falls
		below the adjusted threshold value)
Contact material		AgNi
Rated operational voltage $U_{\rm e}$ (VDE 0110,	IEC/EN 60947-1)	250 V
Minimum switching voltage / Minimum sv	vitching current	24 V / 10 mA
Maximum switching voltage / Maximum s	switching current	250 V AC / 4 A AC
Rated operational current $I_{\rm e}$	AC12 (resistive) at 230 V	4 A
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V	3 A
	DC12 (resistive) at 24 V	4 A
	DC13 (inductive) at 24 V	2 A
AC rating (UL 508)	utilization category (Control Circuit Rating Code)	B 300
	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking	3600/360 VA
	apparent power at B 300	
Mechanical lifetime	_	30 x 106 switching cycles
Electrical lifetime	AC12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles
Maximum fuse rating to achieve	n/c contact	6 A fast-acting
short-circuit protection	n/o contact	10 A fast-acting

General data

MTBF		on request		
Duty time	100 %			
Dimensions (W x H x D)	product dimensions	22.5 x 85.6 x 103.7 mm (0.89 x 3.37 x 4.08 in)		
		97 x 109 x 30 mm (3.82 x 4.29 x 1.18 in)		
Weight		Screw connection technology	Easy Connect Technology (Push-in)	
	Net weight	0.157 kg (0.346 lb)	0.146 kg (0.322 lb)	
	Gross weight	0.179 kg (0.395 lb)	0.168 kg (0.370 lb)	
Mounting		DIN rail (IEC/EN 60715) snap-on mounting with		
Mounting position		any		
Material of housing		UL 94 V-0		
Degree of protection	housing	IP50		
	terminals	IP20		

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Wire size	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 20-14 AWG)	(2 x 20-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 20-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(5.31 - 7.08 lb.in)	

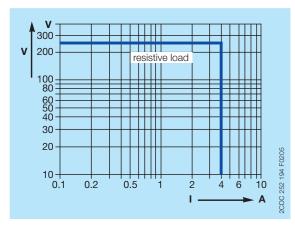
Environmental data

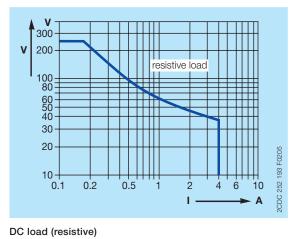
Ambient temperature ranges	- 1	-20+60 °C
	storage	-40+85 °C
Damp heat, cyclic (IEC 60068-2-30)		55 °C, 6 cycle
Vibration, sinusoidal (IEC/EN 60255-21-1)		class 2
Shock (IEC/EN 60255-21-2)		class 2

Isolation data

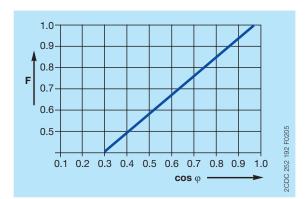
Rated insulation voltage U _i	supply / measuring circuit / output	600 V
(VDE 0110, IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	
Rated impulse withstand voltage U _{imp}	supply / measuring circuit / output	
(IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	
Test voltage between all isolated circuits	rated insulation voltage 250 V	
(type test)	rated insulation voltage 600 V	
Pollution degree (VDE 0110, IEC/EN 60664, IEC/E	3	
Overvoltage category (VDE 0110, IEC/EN 60664, I	III	

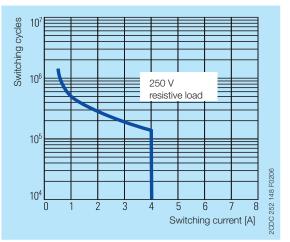
Standards


Product standard	IEC/EN 60255-6
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
RoHS Directive	2002/95/EC

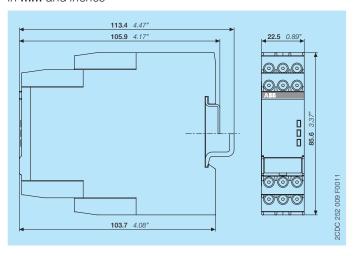

Electromagnetic compatibility

Interference immunity to	IEC/EN 61000-6-2	
electrostatic discharge	IEC/EN 61000-4-2	
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	2070.0
electrical fast transient / burst	IEC/EN 61000-4-4	2070.0
surge	IEC/EN 61000-4-5	
conducted disturbances, induced by	IEC/EN 61000-4-6	Level 3
radio-frequency fields		
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B


Technical diagrams

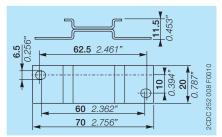

Load limit curves

AC load (resistive)

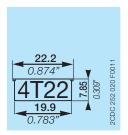


Derating factor F for inductive AC load

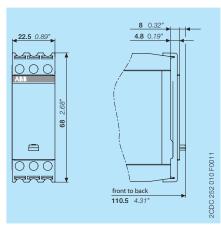
Contact lifetime


Dimensions

in **mm** and *inches*



Accessories


in **mm** and *inches*

ADP.01 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C020x
CM-EFS.2	Instruction manual	1SVC 730 570 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products

-> Electronic Relays and Controls -> Single Phase Monitors

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2010 ABB All rights reserved